COMBINATORICA

Bolyai Society – Springer-Verlag

VERTEX-DISJOINT TRIANGLES IN CLAW-FREE GRAPHS WITH MINIMUM DEGREE AT LEAST THREE

HONG WANG

Received November 21, 1996 Revised February 19, 1998

A graph is said to be claw-free if it does not contain an induced subgraph isomorphic to $K_{1,3}$. Our main result is as follows: For any integer $k \geq 2$, if G is a claw-free graph of order at least 6(k-1) and with minimum degree at least 3, then G contains k vertex-disjoint triangles unless G is of order 6(k-1) and G belongs to a known class of graphs. We also construct a claw-free graph with minimum degree 3 on n vertices for each $3k \leq n < 6(k-1)$ such that it does not contain k vertex-disjoint triangles. We put forward a conjecture on vertex-disjoint triangles in $K_{1,t}$ -free graphs.

1. Introduction

A graph is said to be claw-free if it does not contain an induced subgraph isomorphic to $K_{1,3}$. Let G be a claw-free graph of order n with minimum degree at least 3. Clearly, every vertex of degree at least 3 in G is contained in a triangle. We wonder how many vertex-disjoint triangles G contains. Given an integer $k \geq 2$, it is easy to show that if n is sufficiently large (for instance, it suffices to take n > 18(k-1)), then G contains k vertex-disjoint triangles. Our problem is to determine the least integer n_k such that when $n > n_k$ then G contains k vertex-disjoint triangles. We will show that $n_k = 6(k-1)$. To state the result, we define the following two graphs F and W.

Let W be a wheel of order 6, i.e., W is obtained from a cycle of length 5 by adding a new vertex to the cycle such that the new vertex is adjacent to every vertex of the cycle. Let F be the graph of order 6 obtained from a cycle of length 6 by adding three new edges to the cycle such that the three new edges form a triangle in F. We use C(F) to denote the set of three vertices of degree 4 in F and let P(F) = V(F) - C(F). We also use C(F) to denote the triangle of F induced by C(F).

For a graph G and a subset $X \subseteq V(G)$, we use G[X] to denote the subgraph of G induced by X. Let \sum_k be the set of graphs of order 6(k-1) such that a graph G belongs to \sum_k if and only if each component of G is either isomorphic to W or obtained from 2t vertex-disjoint copies F_1, F_2, \ldots, F_{2t} of F for some $t \ge 1$ by adding

Mathematics Subject Classification (1991): 05C35, 05C70

442 HONG WANG

3t new edges so that F_i is an induced subgraph of G for all $i \in \{1,2,\ldots,2t\}$ and so that the new edges form a perfect matching on $\bigcup_{i=1}^{2t} P(F_i)$. It is easy to see that if $G \in \sum_k$ then each triangle of G is contained in an induced subgraph of G that is isomorphic to W or F. Hence if $G \in \sum_k$ and |V(G)| = 6(k-1), then $G \supseteq (k-1)K_3$ and $G \not\supseteq kK_3$.

In this paper, we prove the following result.

Theorem A. Let $k \geq 2$ be an integer and G a claw-free graph of order at least 6(k-1) and with minimum degree at least 3. Then G contains k vertex-disjoint triangles unless G belongs to \sum_k .

It is easy to see that for integers $k \ge 2$ and $3k \le n < 6(k-1)$, there is a claw-free graph H_n of order n and with minimum degree at least 3 such that each component of H_n is isomorphic to either K_4 , or K_5 , or a graph in \sum_t for some $t \ge 2$. We choose H_n such that the number of components isomorphic to K_4 or K_5 is minimal. Then it is easy to see that H_n does not contain k vertex-disjoint triangles.

Claw-free graphs have been investigated much in hamiltonian graph theory. For some results on this topic, see [5, 6, 7, 12]. Las Vergnas [4] and Sumner [8] proved that a connected claw-free graph of order 2k contains a perfect matching, i.e., k vertex-disjoint copies of K_2 . Our work is an extension in this direction to determine at least how many vertex-disjoint triangles a claw-free graph contains. About vertex-disjoint triangles in a general graph, we would like to mention a result of Corrádi and Hajnal [2]. They proved that if G is a graph of order at least 3k and with minimum degree at least 2k, then G contains k vertex-disjoint cycles. In particular, when the order of G is exactly 3k, then G contains k vertex-disjoint triangles. A generalization of this result is given in [11], that is, if $d(x)+d(y) \ge 4k-1$ for each pair of non-adjacent vertices x and y of G, then G contains k vertex-disjoint cycles.

We conclude our introduction by putting forward a conjecture on vertexdisjoint triangles in $K_{1,t}$ -free graphs. A $K_{1,t}$ -free graph is a graph with no induced subgraphs isomorphic to $K_{1,t}$. Let h(t,k) be the smallest integer such that every $K_{1,t}$ -free graph of order greater than h(t,k) and with minimum degree at least tcontains k vertex-disjoint triangles. By Theorem A, h(3,k)=6(k-1) for $k \ge 2$. We conjecture the following.

Conjecture B. For each integer $t \ge 4$, there exists an integer k_t depending on t only such that h(t,k) = 2t(k-1) for all integers $k \ge k_t$.

We discuss only finite simple graphs and use standard terminology and notation from [1] except as indicated. Let G be a graph. If u is a vertex of G and H is either a subgraph of G or a subset of V(G), we define N(u,H) to be the set of neighbors of u contained in H, i.e., $N(u,H)=N(u)\cap V(H)$ or $N(u,H)=N(u)\cap H$, respectively. We let d(u,H)=|N(u,H)|. Thus d(u,G) is the degree of u in G. If H' is also a subgraph of G, we define $N(H',H)=\cup_{x\in V(H')}N(x,H)$. For a subset U of V(G), G[U] denotes the subgraph of G induced by U. When $U=\{x_1,x_2,\ldots,x_t\}$, we may

also use $G[x_1, x_2, ..., x_t]$ to denote $G[\{x_1, x_2, ..., x_t\}]$. If there is no confusion, we use [U] for G[U]. If S is a set of subgraphs of G, we write $G \supseteq S$. We shall use mK_3 to represent a set of m vertex-disjoint triangles. For two vertex-disjoint subgraphs G_1 and G_2 of G, $e(G_1, G_2)$ is the number of edges of G between G_1 and G_2 . If G' is a graph and we write $G' \subseteq G$ or $G \supseteq G'$, it means that G' is isomorphic to a subgraph of G.

2. Lemmas

First, we define two graphs B and D. Let B be the graph of order 6 obtained from K_4 and a path P of order 4 such that the two end vertices of P are in K_4 . Let D be the graph of order 5 consisting of two triangles which have a common vertex. In the following, G = (V, E) is a claw-free graph.

Lemma 2.1. Let H be an induced subgraph of order 6 in G and $u \in V - V(H)$. Then the following two statements hold.

- (a) If $H \cong W$ and d(u,H) > 0 then $H + u \supseteq 2K_3$.
- (b) If $H \cong F$ and d(u, C(H)) > 0 then $H + u \supseteq 2K_3$.

Proof. First, suppose $H \cong W$. Let x_0 be the vertex of H with $d(x_0, H) = 5$. Then we must have $d(u, H - x_0) > 0$ for otherwise $[x_0, u, v, w] \cong K_{1,3}$ where $\{v, w\} \subseteq N(x_0, H)$ with $v \neq w$ and $vw \notin E$, a contradiction. Let $x \in V(H - x_0)$ be such that $ux \in E$ and $\{y, z\} = N(x, H - x_0)$. As it is claw-free, $[x, u, y, z] \supseteq K_3$. Clearly, $H - \{x, y, z\}$ is a triangle. Thus $H + u \supseteq 2K_3$. So (a) holds. The proof of (b) is evident.

Lemma 2.2. Let H be an induced subgraph of order 6 in G such that either $H \supseteq F$ or $H \supseteq W$. If $H \not\supseteq 2K_3$ then $H \cong F$ or $H \cong W$.

Proof. Evident.

Lemma 2.3. Let H_1 and H_2 be two vertex-disjoint induced subgraphs of G such that either $H_i \cong F$ or $H_i \cong W$ for every $i \in \{1,2\}$. Then the following two statements hold.

- (a) If $H_1 \cong W$ and $e(H_1, H_2) > 0$ then $[V(H_1 \cup H_2)] \supseteq 3K_3$.
- (b) If $H_1 \cong H_2 \cong F$ and $e(C(H_1), H_2) > 0$ then $[V(H_1 \cup H_2)] \supseteq 3K_3$.

Proof. First, suppose $H_1 \cong W$. Let $x_0 \in V(H_1)$ with $d(x_0, H_1) = 5$. As in the proof of Lemma 2.1, it is easy to deduce that $d(u, H_1 - x_0) > 0$ for some $u \in V(H_2)$. Say $uv \in E$ for a vertex $v \in V(H_1 - x_0)$. If $H_2 \cong F$ with $u \in C(H_2)$ or $H_2 \cong W$, then by Lemma 2.1, $H_2 + v \supseteq 2K_3$, and so $[V(H_1 \cup H_2)] \supseteq 3K_3$ as $H_1 - v \supseteq K_3$. If $H_2 \cong F$ and $u \in P(H_2)$, then by Lemma 2.1, $H_1 + u \supseteq 2K_3$, and so $[V(H_1 \cup H_2)] \supseteq 3K_3$ as $H_2 - u \supseteq K_3$. So (a) holds.

Next, suppose $H_1 \cong H_2 \cong F$. As G is claw-free, it is easy to deduce that there exists $u \in P(H_2)$ such that $d(u, C(H_1)) > 0$. By Lemma 2.1, $H_1 + u \supseteq 2K_3$ and so $[V(H_1 \cup H_2)] \supseteq 3K_3$. Thus (b) holds, too.

- **Lemma 2.4.** Let H be an induced subgraph of order 5 in G such that $H \supseteq D$. Let $x_0 \in V V(H)$ be such that $d(x_0, H) > 0$. Then there exists $b \in V(H)$ such that $x_0b \in E$ and $H b \supseteq K_3$.
- **Proof.** Let $V(H) = \{x,y,z,u,v\}$ be such that $H \supseteq \{xyzx,xuvx\}$. Clearly, the lemma is true if $d(x_0,H-x)>0$. So assume $x_0x\in E$ and $d(x_0,H-x)=0$. Then $\{uy,vy\}\subseteq E(H)$ as $[x,x_0,u,y]\not\cong K_{1,3}$ and $[x,x_0,v,y]\not\cong K_{1,3}$. Thus yuvy is a triangle in H-x.
- **Lemma 2.5.** Let H be an induced subgraph of order 5 in G such that $H \supseteq D$. Let x be the common vertex of two edge-disjoint triangles in H. Let $x_0 \in V V(H)$ be such that $d(x_0, H) \ge 2$ and $x_0 x \in E$. Then either $H + x_0 \supseteq 2K_3$ or $H + x_0 \cong W$.
- **Proof.** Let $V(H) = \{x, y, z, u, v\}$ be such that $H \supseteq \{xyzx, xuvx\}$ and $\{x_0x, x_0u\} \subseteq E$. Suppose $H + x_0 \not\supseteq 2K_3$. Then we see that $x_0v \not\in E$ and $d(x_0, yz) \le 1$. Say $x_0y \not\in E$. Then $vy \in E$ as $[x, x_0, v, y] \not\cong K_{1,3}$. Thus $vz \not\in E$ for otherwise $H + x_0 \supseteq 2K_3 = \{x_0uxx_0, vyzv\}$. Then $x_0z \in E$ as $[x, x_0, v, z] \not\cong K_{1,3}$. Hence $H + x_0 \supseteq W$. By Lemma 2.2, $H + x_0 \cong W$.
- **Lemma 2.6.** Let T be a triangle in G and S a set of three distinct vertices in N(T,G-V(T)). Let $H=[V(T)\cup S]$. Suppose $d(b,H)\geq 2$ for all $b\in S$. Then either $H-b\supseteq D$ for some $b\in S$, or $H\supseteq 2K_3$, or $H\cong B$.
- **Proof.** Suppose that $H-b \not\supseteq D$ for all $b \in S$ and $H \not\supseteq 2K_3$. We shall prove $H \cong B$. If $d(b,T) \geq 2$ for all $b \in S$, then it is easy to see that $H-b \supseteq D$ for some $b \in S$. So we may assume $\{uv,ux\} \subseteq E$ and d(u,T)=1 where $S=\{u,v,w\}$ and T=xyzx. Thus $vx \notin E$ as $H-w \not\supseteq D$. Say $vy \in E$.
- If $uw \in E$, then $vw \notin E$ as $H \not\supseteq 2K_3$ and $wx \notin E$ as $H-v \not\supseteq D$, and consequently, $[u,v,w,x] \cong K_{1,3}$, a contradiction. Hence $uw \notin E$. Similarly, we must have $vw \notin E$. If $wx \in E$ then $wy \in E$ as $[x,u,w,y] \not\cong K_{1,3}$. Similarly, if $wy \in E$ then $wx \in E$. As $d(w,H) \geq 2$, we see that $\{x,y\} \cap N(w) \neq \emptyset$ and therefore $\{x,y\} \subseteq N(w)$. Then $wz \in E$ as $[x,u,w,z] \not\cong K_{1,3}$. Then $vz \notin E$ as $H-u \not\supseteq D$. Hence $H \cong B$.
- **Lemma 2.7.** Let T be a triangle in G and S a set of four distinct vertices in N(T, G V(T)). Then either there exists $\{u, v\} \subseteq S$ such that $[V(T) \cup \{u, v\}] \supseteq D$, or there exists $u \in S$ such that $T + u \cong K_4$.
- **Proof.** Suppose that there exists no $\{u,v\}\subseteq S$ such that $[V(T)\cup\{u,v\}]\supseteq D$. Then for every $b\in V(T)$, N(b,S) does not contain two adjacent vertices. As G is clawfree, this implies that $d(b,S)\leq 2$ for every $b\in S$. Hence there exists $x\in V(T)$ such that d(x,S)=2. Let T=xyzx and $N(x,S)=\{u,v\}$. As $uv\not\in E$ and $[x,u,v,y]\not\cong K_{1,3}$, we may assume $uy\in E$. If $vz\in E$, then $[V(T)\cup\{u,v\}]\supseteq D$, a contradiction. Thus $vz\not\in E$ and $uz\in E$ as $[x,u,v,z]\not\cong K_{1,3}$. Hence $T+u\cong K_4$.

3. Proof of Theorem A

Let $Q = \bigcup_{j=r+1}^s T_j$ and $R = G - V((\bigcup_{i=1}^r F_i) \cup Q)$. Let $U = \{u_1, u_2, \dots, u_p\}$ be the list of vertices of R with $d(u_i, Q) = 0$ for all $i \in \{1, 2, \dots, p\}$. Set $R_0 = R - U$. We shall prove the following two claims.

Claim 1. There exists an injection σ : $\{1,2,\ldots,p\} \to \{1,2,\ldots,r\}$ such that either $F_{\sigma(i)} + u_i \cong F$ or $F_{\sigma(i)} + u_i \cong W$ for all $i \in \{1,2,\ldots,p\}$.

Proof of Claim 1 Let $i \in \{1, 2, ..., p\}$. First, suppose $d(u_i, F_j) \leq 1$ for all $j \in$ $\{1,2,\ldots,r\}$. By Lemma 2.4, we can choose a set S of three distinct neighbors of u_i such that $F_i - S \supseteq K_3$ for all $j \in \{1, 2, ..., r\}$. As it is claw-free, $[S \cup \{u_i\}] \supseteq K_3$ and therefore $G \supseteq (s+1)K_3$, a contradiction. Hence $d(u_i, F_{\sigma(i)}) \ge 2$ for some $\sigma(i) \in \{1, 2, ..., r\}$. We show that $F_{\sigma(i)} + u_i \cong F$ or W, and there is no vertex u in $U-\{u_i\}$ such that $d(u,F_{\sigma(i)})\geq 2$. If $F_{\sigma(i)}\cong K_4$ then $F_{\sigma(i)}+u_i\supseteq D$, contradicting the maximality of $|V(\bigcup_{j=1}^r F_j)|$. Therefore $F_{\sigma(i)} \supseteq D$. Let $V(F_{\sigma(i)}) = \{x, y, z, v, w\}$ be such that $F_{\sigma(i)} \supseteq \{xyzx, xvwx\}$. As $F_{\sigma(i)} + u_i \not\supseteq 2K_3$, we see that $d(u_i, vw) \le 1$ and $d(u_i,yz) \leq 1$. If $u_ix \in E$, then by Lemma 2.5, $F_{\sigma(i)} + u_i \cong W$, and so $N(F_{\sigma(i)}+u_i,R-\{u_i\})=\emptyset$ by Lemma 2.1. So we may assume $d(u_i,F_{\sigma(i)})=2$ and $N(u_i, F_{\sigma(i)}) = \{v, y\}$. Let b be a neighbor of u_i with $b \notin \{v, y\}$. If $b \in V(F_i)$ for some $j \in \{1, 2, ..., r\}$, then by Lemma 2.4, we can choose $b \in V(F_j)$ such that $F_j - b$ contains a triangle. Hence $F_{\sigma(i)} + u_i + b \not\supseteq 2K_3$ as $G \not\supseteq (s+1)K_3$. As $[u_i, b, v, y] \not\cong K_{1,3}$, this implies that $bv \not\in E$, $by \not\in E$ and $vy \in E$. Hence $F_{\sigma(i)} + u_i \supseteq F$, and so $F_{\sigma(i)}+u_i\cong F$ by Lemma 2.2. If there is another vertex c in R such that $c\neq u_i$ and $N(c) \cap \{v, x, y\} \neq \emptyset$, then $F_{\sigma(i)} + u_i + c \supseteq 2K_3$ by Lemma 2.1, a contradiction. Hence $N(v,R) = N(y,R) = \{u_i\}$ and $N(x,R) = \emptyset$. This argument allows us to see that if there is another vertex u' in U such that $u' \neq u_i$ and $d(u', F_{\sigma(i)}) \geq 2$, then $N(u', F_{\sigma(i)}) = \{w, z\}$ and $wz \in E$ and so $F_{\sigma(i)} + u_i + u' \supseteq 2K_3$, a contradiction. Hence σ is an injection from $\{1,2,\ldots,p\}$ to $\{1,2,\ldots,r\}$. This shows the claim.

We may assume that $\sigma(i) = i$ and let $G_i = F_i + u_i$ for all $i \in \{1, 2, ..., p\}$.

446 HONG WANG

Claim 2. p = r = s = k - 1.

Proof of Claim 2. By Lemma 2.7 and the maximality of r, we see that $|N(T_i, R_0)| \le 3$ for all $i \in \{r+1, r+2, \ldots, s\}$, and so $|V(R_0)| \le 3(s-r)$. As $|V(\bigcup_{i=1}^r F_i)| \le 5r$ and $n \ge 6(k-1)$, we must have $p \ge r$. As $p \le r$ by Claim 1, it follows that

- (1) p = r and s = k 1;
- (2) $|N(T_i, R_0)| = 3 \text{ for all } i \in \{r+1, r+2, \dots, s\};$
- (3) $N(T_i, R_0) \cap N(T_j, R_0) = \emptyset \text{ for all } r + 1 \le i < j \le s.$

By Lemma 2.1 and the maximality of s, we have

$$d(u,G_i)=0 \text{ if } G_i\cong W \text{ and } d(u,C(G_i))=0 \text{ if } G_i\cong F$$
 (4) for all $u\in V(R_0)$ and $i\in\{1,2,\ldots,r\}.$

On the contrary, suppose r < s. Let $j \in \{r+1, r+2, ..., s\}$ and $G_j = [V(T_j) \cup N(T_j, R_0)]$. By the maximality of r and s, $G_j \not\supseteq K_4$, $G_j \not\supseteq D$ and $G_j \not\supseteq 2K_3$.

Write $T_j = xyzx$ and $N(T_j, R_0) = \{u, v, w\}$. If $d(b, G_j) \ge 2$ for all $b \in N(T_j, R_0)$, then by Lemma 2.6, $G_j \supseteq K_4, D$ or $2K_3$, a contradiction.

Therefore we may assume $d(u,G_j)=1$ and $ux\in E$. As G_j is claw-free and $G_j\not\supseteq D$, we see that either $vx\not\in E$ or $wx\not\in E$, say $vx\not\in E$. Then we may assume $vy\in E$.

Let b_1 and b_2 be two distinct neighbors of u with $x \notin \{b_1, b_2\}$. By (3) and (4), $G_j + b_1 + b_2 \not\supseteq 2K_3$ for otherwise $G \supseteq (s+1)K_3 = kK_3$. Hence $b_1b_2 \not\in E$. As $[u,b_1,b_2,x] \not\cong K_{1,3}$, we may assume $b_1x \in E$. Thus $G_i + b_1 \supseteq D$. By the maximality of r and (4), we must have $b_1 \in P(G_i)$ for some $i \in \{1, 2, ..., r\}$ with $G_i \cong F$. Say $V(G_i) = \{y_1, y_2, \dots, y_6\}$ with $G_i \supseteq \{y_1, y_2, \dots, y_6, y_1, y_2, y_4, y_6, y_2\}$ and $y_1 = b_1$. If $wy \in E$ then it is easy to see that $G_i + b_1 \supseteq 2K_3$ for $[y, v, w, z] \not\cong K_{1,3}$ and so $[y,v,w,z] \supseteq K_3$, a contradiction. Hence $wy \notin E$. It follows that $wx \notin E$ for otherwise $[x, u, w, y] \cong K_{1,3}$. Therefore $wz \in E$. If $b_1w \in E$, then since G is claw-free, we get $[b_1, u, w, y_2] \supseteq K_3$, which implies $[V(G_i) \cup V(G_i)] \supseteq 3K_3$ because $[V(G_i) \cup V(G_i)] - \{b_1, u, w, y_2\} \supseteq \{xyzx, y_4y_5y_6y_4\} = 2K_3$, a contradiction. Thus $b_1w \notin E$. If $vw \in E$, let w' be a neighbor of w with $w' \notin \{v,z\}$. Then by (3) and (4), we see that $G_i + b_1 + w' \not\supseteq 2K_3$ for otherwise $G \supseteq (s+1)K_3 = kK_3$. But as it is claw-free, $[w, v, z, w'] \supseteq K_3$, and so $G_i + b_1 + w' \supseteq 2K_3$, a contradiction. Hence we must have $d(w,G_i)=1$. Then similarly, we can show that there exists $c_1 \in P(G_t)$ for some $t \in \{1, 2, ..., r\}$ with $G_t \cong F$ such that $c_1 w \in E$ and $c_1 z \in E$. Therefore $G_i + b_1 + c_1 \supseteq 2K_3$, and consequently, $G \supseteq kK_3$, a contradiction. This shows Claim 2.

We are ready to complete the proof. Let $i \in \{1, 2, ..., k-1\}$. By the two claims and Lemma 2.3, we see that, if $G_i \cong W$ then G_i is a component of G, and if $G_i \cong F$ then $e(C(G_i), G - V(G_i)) = 0$. Furthermore, we see that if $G_i \cong F$, then

 $d(u,G-V(G_i))=1$ for every $u\in P(G_i)$. To see this, say instead $d(u,G-V(G_i))\geq 2$ for some $u\in P(G_i)$ and let u_1,u_2 and u_3 be three distinct neighbors with $u_1\in C(G_i)$ and $\{u_2,u_3\}\subseteq V-V(G_i)$. Then $[u,u_1,u_2,u_3]\supseteq K_3$ as it is claw-free and so $G_i+u_2+u_3\supseteq 2K_3$, and therefore $G\supseteq kK_3$, a contradiction. This completes the proof of the theorem.

References

- [1] B. Bollobás: Extremal Graph Theory, Academic Press, London (1978).
- [2] K. CORRÁDI and A. HAJNAL: On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar., 14 (1963), 423–439.
- [3] A. Hajnal and E. Szemerédi: Proof of a conjecture of Erdős, in: Combinatorial Theory and its Application, Vol. II (P. Erdős, A. Rényi and V. Sós, eds), Colloq. Math. Soc. J. Bolyai 4, North-Holland, Amsterdam, 1970, 601–623.
- [4] M. LAS VERGNAS: A note on matchings in graphs, Cahiers du Centre d'Études de Recherche Opérationelle, 17 (1975), 257–260.
- [5] H. Li: Hamiltonian cycles in 2-connected claw-free graphs, Journal of Graph Theory, 20, (4) (1995), 447–457.
- [6] M. MATTHEWS and D. SUMNER: Hamiltonian results in $K_{1,3}$ -free graphs, Journal of Graph Theory, 8 (1984), 139–146.
- [7] M. MATTHEWS and D. SUMNER: Longest paths and cycles in $K_{1,3}$ -free graphs, Journal of Graph Theory, 9 (1985), 269–277.
- [8] D. P. Sumner: Graphs with 1-factors, Proc. Amer. Math. Soc., No. 1, Vol. 42 (1974), 8–12.
- [9] H. WANG: Independent cycles with limited size in a graph, Graphs and Combinatorics, 10 (1994), 271–281.
- [10] H. Wang: On the maximum number of independent cycles in a bipartite graph, Journal of Combinatorial Theory, Ser. B, 67 (1996), 152–164.
- [11] H. WANG: On the maximum number of independent cycles in a graph, submitted.
- [12] C. Q. ZHANG: Hamiltonian cycles in claw-free graphs, Journal of Graph Theory, 12 (1988), 209–216.

Hong Wang

Department of Mathematics, The University of New Orleans, New Orleans, Louisiana, USA 70148 and

Department of Mathematics, The University of Idaho Moscow, Idaho, USA 83844 hwang@uidaho.edu